11,429 research outputs found

    The Resonance Overlap and Hill Stability Criteria Revisited

    Get PDF
    We review the orbital stability of the planar circular restricted three-body problem, in the case of massless particles initially located between both massive bodies. We present new estimates of the resonance overlap criterion and the Hill stability limit, and compare their predictions with detailed dynamical maps constructed with N-body simulations. We show that the boundary between (Hill) stable and unstable orbits is not smooth but characterized by a rich structure generated by the superposition of different mean-motion resonances which does not allow for a simple global expression for stability. We propose that, for a given perturbing mass m1m_1 and initial eccentricity ee, there are actually two critical values of the semimajor axis. All values aaunstablea a_{\rm unstable} are unstable in the Hill sense. The first limit is given by the Hill-stability criterion and is a function of the eccentricity. The second limit is virtually insensitive to the initial eccentricity, and closely resembles a new resonance overlap condition (for circular orbits) developed in terms of the intersection between first and second-order mean-motion resonances.Comment: 33 pages, 14 figures, accepte

    Configurational entropy in f(R,T)f(R,T) brane models

    Full text link
    In this work we investigate generalized theories of gravity in the so-called configurational entropy (CE) context. We show, by means of this information-theoretical measure, that a stricter bound on the parameter of f(R,T)f(R,T) brane models arises from the CE. We find that these bounds are characterized by a valley region in the CE profile, where the entropy is minimal. We argue that the CE measure can open a new role and an important additional approach to select parameters in modified theories of gravitation

    The importance of scalar fields as extradimensional metric components in Kaluza-Klein models

    Full text link
    Extradimensional models are achieving their highest popularity nowadays, among other reasons, because they can plausible explain some standard cosmology issues, such as the cosmological constant and hierarchy problems. In extradimensional models, we can infer that the four-dimensional matter rises as a geometric manifestation of the extra coordinate. In this way, although we still cannot see the extra dimension, we can relate it to physical quantities that are able to exert such a mechanism of matter induction in the observable universe. In this work we propose that scalar fields are those physical quantities. The models here presented are purely geometrical in the sense that no matter lagrangian is assumed and even the scalar fields are contained in the extradimensional metric. The results are capable of describing different observable cosmic features and yield an alternative to ultimately understand the extra dimension and the mechanism in which it is responsible for the creation of matter in the observable universe

    Bounds on topological Abelian string-vortex and string-cigar from information-entropic measure

    Get PDF
    In this work we obtain bounds on the topological Abelian string-vortex and on the string-cigar, by using a new measure of configurational complexity, known as configurational entropy. In this way, the information-theoretical measure of six-dimensional braneworlds scenarios are capable to probe situations where the parameters responsible for the brane thickness are arbitrary. The so-called configurational entropy (CE) selects the best value of the parameter in the model. This is accomplished by minimizing the CE, namely, by selecting the most appropriate parameters in the model that correspond to the most organized system, based upon the Shannon information theory. This information-theoretical measure of complexity provides a complementary perspective to situations where strictly energy-based arguments are inconclusive. We show that the higher the energy the higher the CE, what shows an important correlation between the energy of the a localized field configuration and its associated entropic measure.Comment: 6 pages, 7 figures, final version to appear in Phys. Lett.

    False Vacuum Transitions - Analytical Solutions and Decay Rate Values

    Full text link
    In this work we show a class of oscillating configurations for the evolution of the domain walls in Euclidean space. The solutions are obtained analytically. Phase transitions are achieved from the associated fluctuation determinant, by the decay rates of the false vacuum.Comment: 6 pages, improved to match the final version to appear in EP
    • …
    corecore